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Abstract. A coupled-mode theory for the spin response function is used to calculate time- 
dependent propeities of the classical spin chain at infinite temperame. The behaviour of the 
spin autocorrelation function is consistent with computer simulation data, in that the exponent 
of the time tail decreases on moving from intermediate to asymptotic time regions. Results 
for the spin response function and memory function in the two time regions are obtained by a 
combination of asymptotic analysis and numerical studies. For a large wavevector, new the zone 
bounduy, the spin response function displays a very pronounced oscillatory time dependence: 
However, there is next to no structm in the corresponding spectral function, in accord with 
simulation data The asymptotic analysis shows that. in the infinite-temperature limit, coupled- 
mode theory does not comply with usual hydrodynamic assumptions. a view that has also 
emerged from analysis of some of the computer simulation data. 

1. Introduction 

A recent flurry of work on the time-dependent properties of classical Heisenberg spin chains, 
a model of long-standing interest in statistical physics, is largely driven by reports of very 
extensive computer simulation studies (Muller 1989, Gerling and Landau 1989, 1990, de 
Alcantara Bonfim and Reiter 1992). Thus far, work on the interpretation of the computer 
simulation data (e.g. BBhm el d 1993, de Alcantara Bonfim and Reiter 1993) has not 
included a study of a theoretical model based on the coupled-mode approximation even 
though it has proved very successful in other contexts. Such a study is valuable for two main 
reasons. First, a confrontation of predictions based on the coupled-mode approximation and 
simulation datacontributes to understanding the physical significance of the data. Second, it 
aids in an appreciation of the strengths and weaknesses of the coupled-mode approximation. 

The version of the coupled-mode approximation at the heart of the present study has been 
shown to provide a good description of the low-temperature spin dynamics of a classical 
Heisenberg spin chain (Lovesey and Megann 1986). It is not sufficient to use the standard 
form of approximation (e.g. Lovesey 1986), because this~does not contain the strong spin 
correlations that manifest themselves in collective excitations reminiscent of spin waves. 

The refined coupled-mode theory of Lovesey and Megann (1986) appropriate for an 
infinite-temperature spin chain is discussed in section 4, following very brief accounts 
of the Heisenberg model and spin response function. Asymptotic properties of the spin 
response and memory functions are also provided in section 4. The intermediate time 
region, 1 < t J  5 10, is investigated in section 5; appropriate approximate expressions for 
the memory and response functions are given. An analytic approximation to the memory 
function is explored in section 6. Our results are discussed in section 7, and  placed in 
context with findings from computer simulation studies. 
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2. Heisenberg model 

The model consists of unit vectors Sj located at positions, labelled by the index j ,  that lie 
on a line to which periodic boundary conditions are applied. The Heisenberg Hamiltonian 
is 

S W Lovesey and E Balcar 

At infinite temperatures, static and dynamic properties do not depend on the sign of the 
exchange coupling J between nearest-neighbour sites. 

For classical spin variables the static spin correlation functions can be obtained in closed 
analytic form, even at a finite temperature. In the present study we need only record results 
for the second and fourth frequency moments of the frequency- and wavevectordependent 
response function defined in (3.1). The required results for the normalized second (ut) and 
fourth (U;) frequency moments of a classical spin chain evaluated in the high-temperature 
limit are 

WO - - %P(1 3 - y,) (2.2) 

OJ: = $ P ( 5  - 3y9). (2.3) 

Here, y, = cosq, and the wavevector p is measured in units of the inverse of the interspin 
spacing, i.e. --K < q < x .  

3. Response functions 

Dynamic properties of the model (2.1) are studied in terms of spin correlation functions 
(S;(O)S!(t)) where a and f i  label Cartesian components, and S(t)  is the Heisenberg 
representation for the time ( t )  dependence of the spin variables. For a spatially isotropic 
spin-spin interaction, as in (2,1), the correlation function vanishes for a # f i ,  and for a = j3 
it is independent of a; for simplicity of notation, we henceforth omit the Cartesian label in 
the correlation function. Since the spin variables are unit vectors, 

(Sj(O)Sj(O)) = g. 
The response function of interest, denoted G(q, I), is obtained from the spatial Fourier 

transform of Si, which we write as S,. Then 

C(q,  f )  = ( S q ( O ) ~ - q ( t N  (3.1) 

and the isothermal susceptibility, in the high-temperature limit is, 

= (l/T)G(q, 0) = (1/3T). (3.2) 

The response function C(q, t )  is an even function of both q and f .  The second and 
fourth time derivatives of G(q, I) are proportional to mi and w:; in our notation 

I [ ; L Z 2  4! l b Z Z  G(q, f) = G(q,  0) 1 - --f WO + -t WOWI - . . . (3.3) 

We will refer to this expression on many occasions. 
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4. Coupled-mode approximation for G(q. t). 

The coupled-mode approximation for G(q,  t) is conveniently derived from the genera l i~~d 
Langevin equation for Sq(t),  which is a formally exact representation of the time 
development of the spin variable. In the language of the generalized Langevin equation, 
the standard coupled-mode approximation is derived from the exact formalism by making 
a straightforward approximation to the memory function, K(q .  I), the result of which is a 
closed set of equations for G(q, t).  The precise relation between G(q, t) and K ( q ,  t )  is 

W ( q ,  t) = - dt'K(q, f - t')G(q, t') (4.1) 

s in2(q /2)Sdps in2pG(p+ &.t)G(p'- &q, t ) .  (4.2) 

l 
and the standard coupled-mode approximation for K ( q ,  t )  is of the form 

Applied to one-dimensional magnets, this coupled-mode equation is inadequate because it 
does not reproduce the long-lived collective excitations, akin to spin waves, that exist at low 
temperatures. The failure contrasts with great success in the interpretation of critical and 
paramagnetic spin fluctuations in three-dimensional magnetic systems (Cuccoli el al 1989, 
1990, Westhead etal 1991). 

In view of the established shortcoming of (4.2) for one-dimensional magnets with 
T << J ,  we have minimal confidence in using it for the opposite limiting case T >> J .  
Instead, we use the refined coupled-mode theory introduced by Lovesey and Megann (1986), 
which faithfully describes the dynamic properties of one-dimensional magnets at T << J .  
The refinement takes the form of renormalizing the interactions accounted for in the coupled- 
mode approximation, in such a way that they adequately describe the strongly correlated 
spin state that exists for T ,  < J .  In a wider context, the renormalization procedure was 
earlier developed by Martin and coworkers (1973). 

Taking the limit ( T / J )  + 00 in the equation derived by Lovesey and Megann (1986), 

K ( q ,  t) = (24/a)sin2(q/2) dpsin'p G ( P  + 14. t&,)G(p - i q ,  t w y )  (4.3) L 
where we have set J = I, and 

Wq = I(3 - yq)'". (4.4) 
One feature of (4.3) is that it is consistent with (3.3), e.g. K ( q ,  0) = U:. Equations (4.1), 
(4.3) and (4.4) constitute the refined coupled-mode approximation for one-dimensional 
magnets at infinite temperature. In the high-temperature limit, the only difference between 
the standard and refined theories is the factor pq in the latter; for the standard theory 
K~ = 1 for all wavevectors (and temperatures). One effect of pq is to make the refined 
theory consistent with the fourth frequency moment (2.3). 

Asymptotic properties (q + 0, t --f CO, q2t + 0) of the response and memory function 
are'obtained from consideration of homogeneous forms' 

K ( q ,  t )  = AK(qh" ,  tAb) 

G(q, t) = G(qAa, tAb) 
(4.5) 

taken in the limit ha --f 0. These forms for K and G have not been shown to be valid for 
arbitrary values of the arguments. One finds by analysis, a = -i, b = 

~ ( q ,  t) = q 5 f ( t q 5 9  G(q,  I) = g ( r q 5 9  (4.6) 

and 5 2' 
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where the functions f fx)  and g(x) are determined by coupled integral equations derived 
from (4.2) and (4.3). The precise form of these functions is not required to obtain the 
asymptotic time dependences of K ( q ,  t ) ,  namely 

S W Lovesey and E BaJcar 

K(9, t )  - (1 / t )6 /5 .  (4.7) 

The spin autocorrelation function (Sj(O)Sj(t)) is proportional to the integral of C(q, t )  with 
respect to q ,  and the asymptotic time dependence is found to be 

(sj(o)sj(t)) - (i/t)2/5. (4.8) 

The intermediate time development of K ( q ,  t )  and G(q, t)-intermediate between the 
expansion (3.3) and the foregoing asymptotic behaviour-is explored in the next section. 

5. Intermediate time dependence of K(q,  t )  and G(p, t )  

The numerical solution of (4.1) and (4.3) is displayed in figures 1 and 2 for 0 < t c: 10 (t 
is always in units of l/J). Tests of our iteration scheme included a stringent comparison 
between the analytic expression for G and numerical values derived for the special case 
K o( exp(-t/i). Our reported results were obtained using meshes in 9 and f space with 
elements of size (x/20) and (O.Ol/J), respectively. 

* 8 , 10 

Figure 1. The memory 
function. K ( q .  f), obtained 
from (4.1). (4.3) and (4.4) is 
displayed for -r < y < n 
and 0 < I < IO. The units 
are 3 = 1, and unit spacing 
between neighbouring spins 
in the chain. 

The memory and response functions are radically different, e.g. K(0,  f )  = 0, and 
G(9,O) = f = G(0, t). Oscillations in the memory function die out more rapidly than 
those in the response function, as expected. For q at the zone boundary both functions 
show pronounced oscillations with a common frequency. However, the damping in G(z, t )  
is sufficiently strong to smooth out structure in the corresponding frequency spectrum, shown 
in figure 3, which is, in fact, proportional to the inelastic neutron scattering cross-section. 
Even so, the frequency spectrum is significantly different from a Gaussian approximation 
obtained by the Fourier transform of exp(-&i) that is consistent with the first two terms 
in (3.3). 
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0.4 . 
q = 9d20 

Figure 2. The response function, G(q, t). that corresponds to the memory function displayed 
in figure 1. (a)  provides a survey of the function, and.@) and ( e )  give mom derail of the time 
ev0lutian. 
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~ .. . .. - . 0.4 t 

Figure 3. The time Fourier 
transform of G(q,f)  dis- 
played in figure 2(c) is 
shown together with the 
Gaussian model aenp(-w2/ 

I 20;); they nre labelled a and 3 
0 b, respectively. 

tMmyarr VI u t r  LI"LI,T,,L.d_l lCDULW IV, 1, (4, ', PllY "\y,  *, I V L  O I I I Y L 1  " Y . " I O  "I  \y A, .", 
shows that, with t > 1, the memory function is proportional to ( l / t)2 while the response 
function decays exponentially with time. These observations, together with (4.1). lead to 
the following approximate forms for the functions, valid at intermediate times: 

G(q,  t )  - $e~p( - rq ' /~ ro )  

where ro 2: 0.56. The expression for G(q, t )  implies that the spin autocorrelation function 
at intermediate times decreases with a power law (l/t)2'3. 

6. Approximate memory function 

There is some merit in exploring the use of an approximation to the memory function, 
if only to gauge the sensitivity of G(9,r) to features in K ( q , t ) .  To this end we have 
calculated an approximation to the memory function, denoted by KO@, i), from (4.3) using 
for the response function 

This expression is consistent with (3.3). The coefficient (0: - 3wi)  changes sign at yq =,+, 
and this is a signature for the oscillatory time behaviour of G(q,  t) which sets in with 
increasing values of q .  cf figures 2(b) and (c). 

Substituting C&, t )  in (4.3) leads to 

(6.1) G(q, t )  - G & , r ) =  iexp(-?t 1 2  w , ) ( l + t o ~ ( o : - 3 w , Z ) t 4 } .  2 

16 . 
Ko(q,t) = (32) sln~(q/2111(z)exp(-or) 

x (1 + $e'[-$ f $Yq +4Li COS(q/2) - 3YyLz]}. (6.2) 
In this expression, 01 = $ ( t ~ ~ ) ~ ,  z =(I cos(q/2), I,(z) is a modified Bessel function of the 
first kind, and the functions LI and LZ are given by 

in which I ;  = lo. Looking at figures 4 and 1 for Ko(q. t) and the full memory function 
there are some significant differences, e.g. there is just one oscillation in KO. It is, perhaps, 
a surprise that the corresponding response functions are similar in all respects, as can be 
seen by looking at figures 5 and 2(a). 

LI = (2/1,)(1I/Z)' L2 = (Z/~l)(1I/Z)" 
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Figure 4. 
in (6.2). 

I) defined 

G(q4 
0.4 

03 

a2 

0.1 

0.0 

9.1 

9.2 

43 

Figure 5. The response 
function obtained fron~(4.1) 

I using the memory function 0 2 B 8 t " K d q , L ) .  

7. Discussion 

The work reported provides a rather complete survey of the timedependent propedes of 
the classical spin chain at infinite temperature by utilizing a refined version of the standard 
coupled-mode approximation. 

It is possible to make contact on several issues with results obtained from the computer 
simulation studies mentioned in section 1. First, the frequency spectrum shown in figure 3 
is completely consistent with data on the same function reported by Gerling and Landau 
(1990). We find no evidence in the frequency spectrum of a distinct contribution from'the 
oscillatory time dependence evident in G(q,  t )  when 9 is near the zone boundary. The 
discussion in section 6 gives some understanding of the onset of the oscillatory behaviour 
in G(g, t )  with increasing 9 .  

Turning next to the spin autocorrelation function (Sj(0)Sj(f)}, we find ( l / t ) ' j3  and 
(l/t)2/5 in the intermediate and asymptotic 'time regions. Work by Muller (1989) and 
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Gerling and Landau (1989, 1990) provides convincing evidence of a very pronounced 
non-asymptotic time regime in which the exponent for the time tail decreases. For short 
times, Gerling and Landau (1990) report an exponent well above 0.6, but this decreases 
systematically as the data analysis is moved to longer time intervals, and extrapolates to 
a value close to 0.5, which appears to be significantly larger than the value of obtained 
from coupled-mode theory. On the question of the existence of spin diffusion, note that the 
spin diffusion constant is proportional to 

S W Lovesey and E Baicar 

1 r m  

f / dtexp(-st)K(q, i) 
4 0  

evaluated with the limits q + 0, followed by s + 0. The intermediate and asymptotic 
time behaviour we find for K ( q ,  t ) ,  at small q ,  implies that the diffusion constant is indeed 
finite. 

Finally, the asymptotic behaviour of G(q,t)  shown in (4.6) demonstrates that, in 
the infinite-temperature limit, coupled-mode theory is not consistent with the usual 
hydrodynamic assumptions. Such a view has also emerged from an analysis by de Alcantara 
Bonfim and Reiter (1992, 1993) of computer simulation data but, at present, there is no 
consensus of opinion on the topic (Bohm et al 1993). 

Note added in pmof Bdhm and Leschke have extended their analysis based on the calculation of many frequency 
moments and thereby improved the interpretation of computer simulation data: (1993) Physica A 199 116. 
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